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Abstract

Marine turtles undertake long migrations across different geographies and habitats, exposing them to a wide range of
threats throughout their lifespan. Analysing population structure and connectivity is key to informing effective conserva-
tion management. We expand knowledge of Atlantic-wide connectivity of green turtles (Chelonia mydas) by characterising
the genetic structure of the Ascension Island nesting population, one of the largest in the Atlantic Ocean, and carrying out
Atlantic population structure and mixed stock analyses using high-resolution genetic markers. We amplified a~738 bp
fragment (extended D-loop) and a highly polymorphic mitochondrial short tandem repeat (mtSTR) fragment of the mito-
chondrial DNA control region, designating haplotypes based on (1) extended D-loop and (2) the extended D-loop and
mtSTR combined. Overall, 11 extended D-loop and 33 combined haplotypes were found, the dominant haplotypes being
CM-AS8.1 and CM-A8.1/7-12-4-4. Population structure analysis found three main genetic groups: Northwest Atlantic,
Northern South America, and South and East Atlantic. Mixed stock analyses indicate Ascension Island as a major source
for juvenile foraging aggregations in the Southwest Atlantic (34-55%) and Central Africa (18-78%), with some contribu-
tion to West Africa (3—20%). Green turtles are vulnerable to fishery bycatch in the coastal waters of the South and East
Atlantic. Our study underlines how improving sample sizes of Atlantic mtSTR haplotypes could further elucidate green
turtle connectivity across threatened regions. We urge international collaboration to minimise mtSTR data gaps, in order
to enhance connectivity assessments and improve conservation measures between countries that share populations.
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Introduction

Migratory marine species are important within marine ecosys-
tems as they can provide many ecosystem services, namely
nutrient storage and transport, community shaping through
organism dispersal, trophic-dynamic regulations of popula-
tions, and biodiversity promotion (Ferretti et al. 2010; Tavares
etal. 2019). Additionally, many of the migratory marine species
are of conservation or commercial value, including tuna, sea-
birds, sharks, marine mammals, and marine turtles (Lascelles
et al. 2014). These taxa often undertake long migrations across
different habitats and distant geographical areas to reproduce,
feed or develop, and during these extensive movements they
can be vulnerable to a diverse range of threats. Thus, under-
standing dispersal, migratory movements and how populations
are linked is crucial to perceiving threats, understanding their
consequences, and informing effective management strategies
(Martin et al. 2007; Wallace et al. 2011; Dunn et al. 2019).

Marine turtles are highly migratory, long-lived organ-
isms, able to connect ocean basins throughout their life
cycle (Boyle et al. 2009). After hatching, green turtles (Che-
lonia mydas) disperse in the open ocean and undergo an epi-
pelagic omnivorous lifestyle for around 3-5 years (Reich et
al. 2007). This phase is often known as ‘the lost years’ due
to poor knowledge of their whereabouts (Carr 1980; Reich
et al. 2007), although recent work has provided new insights
(e.g., Mansfield et al. 2021). Following this period, juveniles
generally recruit to coastal habitats and transition to benthic
foraging (Bjorndal 1997). Juveniles can spend several years
in the same feeding grounds, until reaching a certain size or
a maturity point that triggers migration to alternative neritic
foraging areas (Lenz et al. 2017) from where natal hom-
ing is undertaken. Adults of both sexes begin to periodically
migrate between neritic foraging grounds and natal nesting
sites (Bowen and Karl 2007). This philopatric behaviour can
result in connections spanning large distances (Carr 1964;
Patricio et al. 2017a). Techniques such as satellite telemetry,
ocean current modelling and stable isotope analysis have
all contributed to the knowledge of migratory connectivity
in marine turtles (e.g., Godley et al. 2010; Seminoff et al.
2012; Scott et al. 2014; Putman and Mansfield 2015; Brad-
shaw et al. 2017; Ng et al. 2018; Ferreira et al. 2020; Kot et
al. 2022), but molecular genetics has played a particularly
key role, especially when assessing whole life cycle con-
nectivity (e.g., Naro-Maciel et al. 2017; Jensen et al. 2020;
Phillips et al. 2022). The combination of these techniques
led to the creation of regional management units (RMUs;
Wallace et al. 2010; recently updated in Wallace et al. 2023)
that group together connected rookeries and foraging areas
for management purposes.

Mitochondrial DNA (mtDNA) is a maternally inher-
ited genetic marker that carries information on population

@ Springer

structure (Harrison 1989). Haplotypes identified from the
D-loop within the mtDNA control region have been used
extensively in studies assessing marine turtle population
structure and connectivity (e.g., Formia et al. 2007; Proietti
et al. 2012; Shamblin et al. 2015b, 2018b; Patricio et al.
2017a, b; Jensen et al. 2020). These studies have demon-
strated limited maternal gene flow among rookeries, with
high levels of genetic structuring established along several
female lineages, supporting the natal homing hypothesis
wherein female turtles return to their natal beach to nest
(Meylan et al. 1990). Juvenile foraging aggregations, on the
other hand, are typically made up of a mixed stock of indi-
viduals from multiple nesting populations. Because rooker-
ies are genetically structured, mixed stock analysis (MSA;
Millar 1987) can be used to estimate how much a particu-
lar rookery contributes to a foraging aggregation and thus
reveal how different rookeries and foraging aggregations
are connected across the global ocean.

The population genetic structure of green turtles has been
extensively studied using mtDNA over the past few decades
across the Indian, Pacific and Atlantic oceans (Bowen et al.
1992; Encalada et al. 1996; Dethmers et al. 2006; Bourjea
et al. 2007; Jensen et al. 2019). As per the recent update to
green turtle RMUs, Atlantic green turtles are divided into
two RMUs: the North Atlantic and South Atlantic (Wallace
et al. 2023). Over the last decade, population studies have
identified three main genetic groups for nesting populations
(Northwest Atlantic, Northern South America, and South
Atlantic & West Africa; Patricio et al. 2017a), and three
main genetic groups for foraging aggregations (Northwest
Atlantic, Central Atlantic, and South Atlantic & West Africa;
Patricio et al. 2017b), with each group broadly characterised
by a common genetic haplotype. Genetic structure in Atlan-
tic green turtles has primarily been inferred for mtDNA
haplotypes based on the traditionally used marker, a~486
base pair (bp) sequence within the mtDNA control region
(Encalada et al. 1996; Formia et al. 2006). However, recent
studies have developed a database of haplotypes based on
polymorphisms within an extended~817 bp fragment of
this region (hereby referred to as ‘extended D-loop’) that
contains the shorter fragment (Shamblin et al. 2012), and on
another more variable region of mtDNA that has short tan-
dem repeats of ‘AT’ nucleotides (hereby referred to as the
mtSTR; Tikochinski et al. 2012). Both the extended D-loop
and mtSTR fragments provide higher resolution mark-
ers, allowing more detailed insight into population struc-
ture (Shamblin et al. 2015b, 2018a; Karaman et al. 2022).
MtSTR haplotyping has been widely used in Mediterranean
green turtles to unravel previously unidentified genetic dif-
ferentiation at significant geographic scales, considering the
nesting distribution in the Mediterranean (Tikochinski et al.
2018; Karaman et al. 2022). However, corresponding data
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in the wider Atlantic is limited and mainly restricted to spe-
cific regions, namely rookeries in the Northwest Atlantic,
the Caribbean and South Atlantic islands off Brazil (Sham-
blin et al. 2015b, 2020; Barbanti et al. 2019). To achieve
a comprehensive assessment of green turtle connectivity at
meaningful scales, more data are needed across the Atlantic.

Isolated in the South Atlantic, approximately 8 degrees
south of the equator and midway between the continents of
Africa and South America, Ascension Island hosts one of
the most significant green turtle rookeries globally, with a
population estimate of 14,840 nesting females overall and
28,000 nests per annum (Weber et al. 2014). Historically,
the island was subjected to mass harvesting of nesting green
turtles for consumption, and as a result, the population was
depleted (Broderick et al. 2006). However, thanks to con-
servation efforts in Brazil (Marcovaldi et al. 2000) and the
end of harvest in Ascension, it is now in recovery (Weber et
al. 2014). Green turtles are listed as Globally Endangered
according to the Red List of the International Union for Con-
servation of Nature (IUCN; Seminoff 2023), and whilst the
South Atlantic population is classed as Least Concern, this
is considered to be conservation-dependent (Broderick and
Patricio 2019). Further, negative population trajectories can
take many years to become apparent due to their long-lived
nature and long generational times. Threats to green turtles
persist for the South Atlantic subpopulation; for example,
an increased number of strandings have been reported for
green turtles on the Brazilian coast, with notable threats
including interactions with artisanal fisheries and ingestion
of solid waste (Nunes et al. 2023). On the other side of the
Atlantic, interactions with artisanal fisheries remain a pres-
ent threat (dos Santos et al. 2024; Cardona et al. 2025; Mes-
tre et al. 2025).

Previous studies have found that the CM-AS haplotype,
the haplotype most prevalent throughout the South Atlan-
tic, was dominant among Ascension Island nesting turtles
(Bjorndal et al. 2006; Formia et al. 2006). Connectivity
between Ascension Island and foraging grounds on the
western Atlantic continental margins (within the aforemen-
tioned South Atlantic & West Africa genetic grouping) is
well established. Tagging and satellite telemetry collected
over several decades suggest that adult foraging areas are
located exclusively along the Brazilian continental shelf
(Luschi et al. 1998; Hays et al. 2002), while mixed stock
analysis suggests that juvenile foraging areas extend fur-
ther south into northern Argentina and Uruguay (Caraccio
2008; Prosdocimi et al. 2012) and as far north as the Carib-
bean (e.g., Luke et al. 2004). Links have also been proposed
between Ascension Island and juvenile foraging grounds
along the east coast of Africa, but low marker resolution
and poor geographic coverage of sampling have, as yet,
limited robust conclusions (Bolker et al. 2007; Patricio et al.

2017a). Obtaining mtSTR haplotypes for Ascension Island,
and other South Atlantic populations, could help distinguish
differences within the widely dominant CM-A8/CM-AS.1
haplotype.

Here, we reassess the structure of Atlantic green turtle
rookeries, using the largest and most recent dataset of hap-
lotypes based on the extended D-loop fragment (n=21
rookeries). Using mixed stock analysis, we use the extended
D-loop and mtSTR sequences to assess the contribution
of Ascension Island to different South Atlantic foraging
aggregations at a more robust level. We incorporate novel
haplotype data from Ascension Island and other rookeries/
foraging aggregations of green turtles from the South Atlan-
tic RMU (Guinea-Bissau, Congo and Brazil;, Wallace et al.
2010; Wallace et al. 2023). This study will provide an exten-
sive and contemporary analysis of Atlantic-wide genetic
structure and connectivity in order to better understand how
green turtles are connected across countries bordering the
Atlantic Ocean and inform the optimisation of conservation
strategies.

Materials and methods
Study site and sampling

Ascension Island is a United Kingdom overseas territory
located in the centre of the South Atlantic Ocean (7.94° S,
14.36° W; Fig. 1). Green turtle biopsy samples (n=303)
were collected opportunistically during night surveys of
nesting females in 2015 and 2016, across the months of Jan-
uary to May (peak nesting is in March; Godley et al. 2001).
Samples were taken from the three main nesting beaches on
the island, Long Beach (LB), North East Bay (NEB) and
South West Bay (SWB), which together host around 75%
of nesting (Weber et al. 2014), and two further beaches,
Clarke’s and Payne Point, which host minimal nesting (Fig.
1, see Table S1 for the number of samples collected from
each beach in each year). Turtles were sampled after ovi-
position to minimise disturbance of nesting behaviour. Soft
tissue biopsies of ~5 mm diameter were taken from adult
females from the epidermis of the neck area, or in some rare
cases from the front flipper, and stored in 96% ethanol at
ambient room temperature.

Tagging of individuals was not carried out; however,
due to the high volume of nesting females and relatively
low sampling effort, the probability of repeat sampling of
the same individuals within a year was deemed negligible.
Additionally, Ascension Island green turtles have an aver-
age remigration interval of four years (Mortimer and Carr
1987) and so sampling over two consecutive years most
likely prevented repeat sampling across seasons.

@ Springer
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Fig. 1 Location of Atlantic rookeries (triangles) and foraging grounds
(circles) included in this study. The study site is in green. See Table 1
for site abbreviations. Br=Brazil, GB=Guinea-Bissau, Mau=Mauri-

Sequencing and haplotype assignment

DNA was extracted from biopsy samples using the QIAGEN
DNeasy Blood & Tissue Kit, according to the manufac-
turer’s instructions. The primers LCM15382 (5’-GCT TAA
CCC TAA AGC ATT GG-3’) and H950 (5°-TCT CGG ATT
TAG GGG TTT-3"; Abreu-Grobois et al. 2006) were used to
amplify a~860 bp fragment of the mtDNA control region
(extended D-loop) using polymerase chain reaction (PCR).
This fragment contained the ~486 bp short region which has
typically been analysed in genetic studies of green turtles
(Formia et al. 2006, 2007). The primers CM-D-1 F (5'-AGCC
CATTT ACTTCT CGCCAAACCCC-3") and CM-D-5 R (5'-
GCTCCTTTTATCTGATGGG ACTGTT-3"; Tikochinski et
al. 2012) were used to amplify a~200 bp short tandem repeat
region at the end of the mtDNA control region (mtSTR).
PCRs were conducted in a total volume of 15 pl contain-
ing: 0.75 pl of each forward and reverse primer at 10 uM; 7.5
ul of QIAGEN’s Taq PCR Master Mix (contains Taq DNA
Polymerase, 2 x QIAGEN PCR Buffer, 3 mM MgCl,, and
400 puM of each dNTP); 3 ul of ddH,0; and 3 pl of DNA at
10 uM. Cycling conditions for the mtDNA extended D-loop
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tania, UK =United Kingdom, USA="United States of America. Inset:
Map of the study site, Ascension Island, UK. Beaches where samples
were collected are labelled

sequence were as follows: 94 °C for 5 min; 30 cycles of 94
°C for 1 min, 52 °C for 1 min and 72 °C for 1 min; then 72
°C for 10 min. For the mtSTR, conditions were: 94 °C for 2
min; 30 cycles of 94 °C for 30 s; 56 °C for 30 s, and 72 °C
for 1 min; followed by 72 °C for 7 min. For certain samples
that did not amplify effectively at 30 cycles, the number of
cycles was increased to 35. The Cytiva ExoProStar one-step
Exonuclease I and Alkaline Phosphatase solution was used
to purify the PCR products required for sequencing, remov-
ing any unincorporated primers and dNTPs. Incubation for
15 min at 37 °C followed by 15 min at 80 °C was carried
out to enable purification before inactivating the enzymes.
Forward and reverse DNA strands were sequenced for the
extended D-loop sequence, and for the mtSTR marker,
only forward DNA strands were sequenced initially. When
mtSTR regions retrieved an unclear sequencing result, we
repeated the PCR, sequencing both the forward and reverse
strands. Failed extended D-loop sequences were also
repeated with both primers. Sequencing was carried out at
Macrogen (Netherlands).

Sequence assemblage and manual alignment were carried
out using BioEdit 7.2.5 (Hall 1999). The extended D-loop
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sequences were truncated to ~738 bp. The basic local align-
ment search tool (BLAST) from the National Centre for
Biotechnology Information (www.ncbi.nlm.nih.gov) was
used to identify haplotypes, following Archie Carr Center
for Sea Turtle Research (ACCSTR; https://accstr.ufl.edu/res
ources/mtdna-sequences/) nomenclature.

MtSTR haplotypes were designated according to the num-
ber of ‘AT’ pairs present in 4 loci following Tikochinski et al.
(2012), e.g., 7-12-4-4. In cases of heteroplasmy, chromato-
grams were used to identify the haplotype from the dominant
peaks (Tikochinski et al. 2012) and in cases where this was
unclear, the mtSTR sequence was removed from the study.

Genetic composition

We truncated the control region fragment to the ~486 bp seg-
ment in order to compare the genetic composition of Ascen-
sion Island (n=289) in this study to previous data from this
island (Formia et al. 2007; n=245), with pairwise com-
parisons based on frequency-based genetic distances (Fiy)
conducted in Arlequin 3.5.1.3 (Excoffier and Lischer 2010).
Within the contemporary data, we also conducted pairwise
comparisons (Fgy) using the extended D-loop, and extended
D-loop and mtSTR combined to examine whether there was
significant genetic differentiation between the three main
Ascension Island nesting beaches, i.e., South West Bay,
North East Bay, and Long Beach. Clarke’s and Payne Point
were excluded from this analysis due to the small sample
size and relatively low nesting frequency (Weber et al. 2014).

Population structure

We estimated the haplotype diversity (%) of green turtle
Atlantic rookeries for the extended D-loop and for the
extended D-loop combined with mtSTR haplotypes (%), in
Arlequin 3.5.1.3 (Excoffier and Lischer 2010); see Table
1 for a list of rookeries used; see Table S2 for extended
table including groupings used for MSAs and nester abun-
dance data; see Table S3 and S4 for haplotype data). For
the extended D-loop haplotypes, we estimated pairwise
comparisons based on sequence divergence among haplo-
types (@Dgy) and on haplotype frequencies (Fgy) in Arlequin
3.5.1.3. For the extended D-loop and mtSTR combined, due
to the nature of the mtSTR, only frequency-based statistics
were considered (Tikochinski et al. 2018; Shamblin et al.
2023a). Because the South Atlantic region is dominated by
the CM-AS8 haplotype, additional Fg; comparisons were
conducted using only CM-A8 combined with mtSTRs (CM-
A8+mtSTRs) to assess potential variation within mtSTRs
linked to the dominant D-loop haplotype and to reduce
noise from less common haplotypes. To calculate an opti-
mum threshold for P-value significance, a false discovery

rate (FDR) correction (Narum 2006) was applied, consid-
ering the total number of comparisons carried out in the
analysis under an expected original threshold of P<0.05.
The R package ‘gplots’ was used to create heatmaps with
dendrograms based on F¢; /@y values (Warnes et al. 2024)
in RStudio using R version R-4.3.1 (RStudio Team 2020, R
Core Team 2023). The software GenAlEx 6.51b2 (Peakall
and Smouse 2006, 2012) was used to perform a principal
coordinate analysis (PCoA), using the genetic distances to
visualise how the rookeries were grouped genetically. Sepa-
rate PCoAs were carried out for the extended D-loop and
extended D-loop and mtSTR combined haplotype datasets.
Using the results as a priori grouping, the significance was
tested by carrying out an analysis of molecular variance
(AMOVA) in Arlequin 3.5.1.3 (Excoffier and Lischer 2010).

Mixed stock analyses

We used the mixstock package in R (Bolker et al. 2007)
to conduct ‘many-to-many’ mixed stock analyses (MSAs;
Okuyama and Bolker 2005; Bolker et al. 2007; Stahelin et
al. 2022) to estimate the relative contribution from Ascen-
sion Island to eight juvenile green turtle foraging aggrega-
tions (see Table 1 for site names and locations) within the
South Atlantic RMU (Wallace et al. 2010, 2023). Separate
MSAs were conducted using the extended D-loop and the
extended D-loop and mtSTR combined. Analyses were con-
ducted with and without priors based on nester abundance.
Nester abundance (Table S2), defined as the number of nest-
ing females (Seminoff et al. 2015), was used to establish
weighted priors. All analyses were run with 50,000 itera-
tions. A Gelman-Rubin convergence diagnostic was applied
(Gelman and Rubin 1992), and results indicated chain
convergence if the shrink factor was <1.2. As we aimed to
specifically assess the contributions from Ascension Island,
contributions from other rookeries and source-centric results
are not presented or interpreted in this paper.

For the MSAs, individual rookeries within Florida, Cuba
and Mexico (all outside of the South Atlantic RMU) were
combined by country (Table 1), reflecting national boundar-
ies and, hence, management. We know from previous stud-
ies that these populations have negligible importance to our
research question (Naro-Maciel et al. 2007; Patricio et al.
2017a). We decided not to dismiss them from the mixed
stock analysis due to the overlap of a few D-loop haplo-
types between these rookeries and the foraging grounds
assessed. The dataset for MSAs was composed of 15 rook-
ery groups and 8 foraging aggregations for the extended
D-loop and 10 rookery groups and 6 foraging aggregations
for the extended D-loop and mtSTR combined (Table 1).
The latter had fewer rookeries and foraging aggregations
because mtSTR data is still missing from several sites. For
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Table 1 Atlantic nesting populations and foraging grounds used for the population structure analyses and mixed stock analyses in this study. Mixed
stock analysis (MSA) rookery grouping is included for populations used in the mixed stock analyses. Regional management unit (RMU) refers
to those designated by ( Wallace et al. 2023 )

Site name Abbrev.  RMU MSA Haplotype data References (Haplotype data)
group

Nesting populations

Northern US Limit (South Caro- NUSA North Atlantic ~ USA  Extended D-loop (Shamblin et al. 2018a)

lina, North Carolina, Delaware)

Central eastern Florida CEFL North Atlantic  USA  Extended D-loop+mtSTR (Shamblin et al. 2020)

Southeastern Florida SEFL North Atlantic ~ USA  Extended D-loop+mtSTR  (Shamblin et al. 2020)

Key West, Florida MKFL North Atlantic  USA  Extended D-loop+mtSTR (Shamblin et al. 2020)

Dry Tortugas, Florida DTFL North Atlantic  USA  Extended D-loop+mtSTR (Shamblin et al. 2020)

Quintana Roo, Mexico QRMX North Atlantic  MX Extended D-loop (Pérez-Rios 2008; Shamblin et al.
2018b)

Tamaulipas and Veracruz, Mexico  WBCMX North Atlantic  MX  Extended D-loop (Millan-Aguilar 2009; Shamblin et al.
2018b)

Campeche and Yucatan, Mexico EBCMX  North Atlantic  MX  Extended D-loop (Millan-Aguilar 2009; Shamblin et al.
2018b)

Cayo Arcas, Campeche, Mexico  CAMX North Atlantic  MX  Extended D-loop (Millan-Aguilar 2009; Shamblin et al.
2018b)

Scorpion Reef, Yucatan, Mexico =~ SRMX North Atlantic  MX  Extended D-loop (Millan-Aguilar 2009; Shamblin et al.
2018b)

Guanahacabibes Peninsula and GUCB North Atlantic  CUB  Extended D-loop (Azanza-Ricardo et al. 2023)

San Felipe, Cuba

Isla de la Juventud 1JCB North Atlantic ~ CUB  Extended D-loop (Azanza-Ricardo et al. 2023)

Cayo Largo, Cuba CLCB North Atlantic  CUB  Extended D-loop (Azanza-Ricardo et al. 2023)

Tortuguero, Costa Rica CR North Atlantic  CR Extended D-loop+mtSTR  (Shamblin et al. 2023a)

Grand Cayman (wild population), CI North Atlantic ~ CI Extended D-loop+mtSTR (Barbanti et al. 2019)

Cayman Islands

Buck Island BUC North Atlantic  BUC  Extended D-loop (Shamblin et al. 2012)

Aves Island, Venezuela AV North Atlantic AV Extended D-loop (Shamblin et al. 2012)

Matapica and Galibi, Suriname SUR North Atlantic  SUR  Extended D-loop (Shamblin et al. 2012)

Cayenne, French Guiana FG North Atlantic ~ FG Extended D-loop+mtSTR  (Jorddo et al. 2017; Patricio et al. 2024)

Atol das Rocas, Brazil RA South Atlantic  RA Extended D-loop+mtSTR (Shamblin et al. 2015b)

Fernando de Noronha, Brazil FN South Atlantic ~ FN Extended D-loop+mtSTR  (Shamblin et al. 2015b)

Trindade Island, Brazil TRI South Atlantic  TRI ~ Extended D-loop+mtSTR (Shamblin et al. 2015b)

Ascension Island, UK ASC South Atlantic ~ ASC  Extended D-loop+mtSTR  This study

Poilao, Guinea-Bissau GB South Atlantic ~ GB Extended D-loop+mtSTR  (Patricio et al. 2024)

Sao Tomé and Principe STP South Atlantic ~ STP  Extended D-loop+mtSTR (Hancock et al. 2019)

Foraging grounds

Alagoas, Brazil ALG N/A N/A  Extended D-loop (Almeida et al. 2021)

Coroa Vermelha, Brazil CorV N/A N/A  Extended D-loop+mtSTR Laboratério de Genética e Evolugao
Molecular, UFES, unpublished data

Aracruz, Brazil ARA N/A N/A  Extended D-loop+mtSTR Laboratério de Genética e Evolugao
Molecular, UFES, unpublished data

Uruguay URU N/A N/A  Extended D-loop (Prosdocimi et al. 2024)

Congo CON N/A N/A  Extended D-loop+mtSTR Congo Renatura, unpublished data

Sao Tomé and Principe STP N/A N/A  Extended D-loop+mtSTR (Hancock et al. 2019; Patricio et al.
2024)

Unhocomo, Guinea-Bissau UNH N/A N/A  Extended D-loop+mtSTR  This study

Parc National du Banc D’Arguin, BA N/A N/A  Extended D-loop+mtSTR (Patricio et al. 2024)

Mauritania

foraging aggregation datasets, only turtles that fell within
the size range of immature individuals were included. This
avoids biased results in MSAs by including adult individu-
als that may have different dispersal patterns and be more
prone to forage closer to home (Hays and Scott 2013). In
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foraging datasets not restricted to immature individuals
upon data collection (Banc D’Arguin, Mauritania; Unho-
como, Guinea-Bissau; Alagoas, Brazil), adult life stage was
designated based on curved carapace length (CCL) of nest-
ing green turtles, using the average minimum adult size as
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a threshold. Average minimum adult size was calculated as
the mean nesting female size minus two standard deviations
(Stewart et al. 2007; Phillips et al. 2021). Satellite tracking
and flipper tagging data have shown that breeding females
from Poildo Island use foraging areas in Mauritania/
Guinea-Bissau (Catry et al. 2023), whereas adult females
from Ascension Island forage in Brazil (Luschi et al. 1998).
Hence, adult size class for Banc d’Arguin and Unhocomo
was calculated using CCL data from Poildo (n=409,
2018-2021; Catry et al. 2023), and for Brazilian foraging
grounds, data from Ascension Island were used (n=788,
2012-2022; unpublished data from Ascension Island Gov-
ernment Conservation and Fisheries Directorate). Since we
only had extended D-loop and mtSTR haplotypes from a
single French Guiana beach, these were extrapolated to the
entire country. Due to missing extended D-loop sequence
information for some haplotypes within the Mexico nesting
populations, assumptions of the most common associated
extended sequence were made from shorter D-loop haplo-
type data. These assumptions enabled the inclusion of this
population in the MSA and are not expected to significantly
impact results, as the implicated haplotypes are absent
from Ascension Island and from all South Atlantic forag-
ing areas assessed except one (Unhocomo, Guinea-Bissau:
CM-A26.1, 1.16%).

Results
Genetic composition

DNA extraction or amplification was successful for 289 nest-
ing female tissue samples (95% of the samples), which were
sent for sequencing. We found 10 different shorter (~486
bp) D-loop haplotypes, which separated into 11 extended
(~738 bp) D-loop haplotypes. The CM-AS8 shorter haplo-
type was dominant at Ascension Island (74.4% of the total
sample set), but using the longer sequences we identified
two variants: CM-A8.1 and CM-AS8.3 (98.6% and 1.4% of
total CM-AS8 samples, respectively, Table 2). These higher-
resolution characterisations also resulted in two previously
unnamed haplotypes, CM-A45.1 (GenBank accession num-
ber: PP429908) and CM-A39.1 (PQ604655). We identified
the haplotype CM-A42.1 for the first time in Ascension
Island in four turtles (1.4%). CM-A69 (CM-A69.1, previ-
ously an orphan haplotype identified in Sao Francisco de Ita-
bapoana, Brazil; Jordao et al. 2017) was also found (0.4%).
For the mtSTR, 19 different haplotypes were identified, of
which 16 were present among individuals with CM-AS hap-
lotypes. The highest frequency mtSTR haplotype was 7-12-
4-4 (55.4% of 202 successfully identified mtSTR). When
considering extended D-loop sequences combined with

the mtSTR, 33 haplotypes were identified, of which over
half were CM-AS variants (n=18). For all extended D-loop
haplotypes except CM-A8.3, CM-A39.1 and CM-A45.1,
combinations with 7-12-4-4 were the most frequent. Hetero-
plasmy, wherein two mtDNA haplotypes are present within
one individual, was present to some degree in all our mtSTR
samples, and for 54 sequences, the dominant haplotype was
deemed unclear (Table S5). These samples were excluded
from analyses using mtSTR haplotypes. The genetic vari-
ability of the Ascension Island rookery was intermediate in
comparison to the other Atlantic rookeries (Table 3).

‘When comparing the ~486 bp shorter D-loop haplotypes, we
found no significant difference between this study and the previ-
ous study on Ascension Island (Formia et al. 2007; Fg= 0.00,
p=0.36, FDR corrected P value of 0.03). In general, the differ-
ences between the two studies were exhibited in rare haplotypes
(Fig. 2). The haplotype CM-AS, dominant in the South Atlan-
tic, was by far the most frequent in both studies (Formia et al.
2007: 83.3%; this study: 74.4%; Fig. 2). There were instances
of haplotypes found only in our study (CM-A42, CM-A69),
and haplotypes found only in the previous study (Formia et al.
2007; CM-A25, CM-A44, CM-A46, CM-AS0; Fig. 2). Our
study found increased frequencies of rare haplotypes CM-A45
and CM-A39, the percentage frequency having increased from
0.4 to 2.4% and 0.4 to 2.1%, respectively (Fig. 2).

Pairwise comparisons based on haplotype frequencies
showed no significant differences among the three main
Ascension Island nesting beaches (see Fig. 1 fornames) when
considering the extended D-loop (SWBXNEB: Fg;_—0.010,
»=0.907; NEBxLB: F;_0.000, p=0.369; LBXSWB: Fg_-
0.005, p=0.583) or extended D-loop and mtSTR combined
(SWBXNEB: F;.0.015, p=0.080; NEBxLB: F;0.002,
p=0.271; LBxSWB: F;.0.025, p=0.034) when using an
FDR corrected P-value of P=0.020.

Population structure

For the extended D-loop (Fg;and @), extended D-loop com-
bined with mtSTR (Fg;) and CM-A8 haplotypes combined
with mtSTR (F§y), there was no significant genetic difference
between Ascension Island (ASC) and Atol das Rocas (RA; Fig.
3, Table S6, Table S7, Table S8, Table S9). Ascension Island
was also not significantly distinct from Fernando de Noronha
(FN) for the D-loop when using F'g: Ascension Island was dif-
ferent to all other populations across the four comparisons.
The PCoA for both sets of markers separated the nest-
ing populations into three main groups, each defined by a
dominant haplotype: Northwest Atlantic (CM-A1/CM-A3),
Northern South America (CM-AS), and South Atlantic and
West Africa (CM-AS; Fig. 4). The principal coordinates
explained 69.3% (Fgr) and 74.5% (Dgy) of genetic variabil-
ity. An AMOVA using the a priori grouping derived from
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Table 2 Haplotype frequen- Haplotype Frequency Percentage
cies derived from 2 89_ DNA 486 bp 738 bp Accession number mtSTR frequency
samples from Ascension Island
green turtles (Chelonia mydas). CM-A6 CM-A6.1 JQ366073 7-12-4-4 5 1.7
Haplotypes based on both a~486 Unidentified 2 0.7
bp and ~738 bp mitochondrial CM-A8 CM-A8.1 JF308472 6-12-4-4 5 1.7
control region sequences (short 6-13-4-4 9 3.1
and extended D-loop, respec- 6-14-4-4 3 1.0
EiVﬂY) and o N'zot(l)l bp ig‘l’\r;A 6-17-4-4 3 1.0
andem repeats in the m
control region (mtSTR) are 7-11-4-4 13 45
shown. ‘Unidentified’ represents 7-12-4-4 85 294
samples where D-loop haplotypes 7-13-4-4 14 4.8
were identified, but the sequenc- 7-14-4-4 1 0.3
ing of the mtSTR region was 7-15-4-4 2 0.7
indiscernible an.d diq not enable 7-16-4-4 6 2.1
h.aplotype 1dent1ﬁcat10n duc.e to 8-10-4-4 1 03
either problematic sequencing
or heteroplasmy. NA represents 8-11-4-4 7 24
samples where D-loop haplotypes 8-12-4-4 5 L7
were not identified due to prob- 8-13-4-4 1 0.3
lematic sequencing 8-14-4-4 5 1.7
8-15-4-4 1 0.3
Unidentified 51 17.6
CM-A8.3 JF308474 7-11-4-4 2 0.7
7-12-4-4 1 0.3
CM-A9 CM-A9.1 JF308475 7-11-4-4 3 1.0
7-12-4-4 5 1.7
Unidentified 2 0.7
CM-A10 CM-A10.1 JF308476 7-12-4-4 2 0.7
7-17-4-4 1 0.3
8-12-4-4 1 0.3
Unidentified 5 1.7
CM-A24 CM-A24.1 JF308479 7-12-4-4 6 2.1
CM-A32 CM-A32.1 JF308480 7-12-4-4 1 0.3
Unidentified 1 0.3
CM-A39 CM-A39.1 PQ604655 7-12-4-4 2 0.7
8-12-4-4 3 1.0
Unidentified 1 0.3
CM-A42 CM-A42.1 JF308481 6-17-4-4 1 0.3
7-12-4-4 2 0.7
Unidentified 1 0.3
CM-A45 CM-A45.1 PP429908 5-13-4-4 1 0.3
5-14-4-4 1 0.3
Unidentified 5 1.7
CM-A69 CM-A69.1 KC792574 7-12-4-4 1 0.3
NA NA 6-12-4-4 1 0.3
7-12-4-4 2 0.7
Unidentified 19 6.6
Total 289 100.0

the PCoA based on Fg¢p and @¢pshowed this grouping tobe  (Fop = 0.228, P=0.017). Notably, it suggests that Guinea-
highly significant (Fg;: Fop= 0. 489, P=0.000; @¢;: Fop=  Bissau is separated from the rest of the South Atlantic group.
0. 831, P=0.000).

Principal coordinates of the PCoA based on the extended ~ Mixed stock analyses
D-loop and mtSTR explained 65.8% of genetic variability.
Visually, results do not adhere to traditional grouping; how-  Mixed stock-centric results from many-to-many mixed
ever, an AMOVA using this a priori grouping was significant  stock analyses incorporating rookery size priors indicated
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Table 3 Sample size (n), haplotype number (hap), haplotype diversity (2, mean+SD) of 21 green turtle (Chelonia mydas) Atlantic rookeries for
haplotypes based on two genetic markers: (1) a~738 bp mitochondrial control region sequence (extended D-loop); and (2) haplotypes based on
a~738 bp mitochondrial control region sequence combined with a~200 bp region of short tandem repeats in the mtDNA control region (extended
D-loop+mtSTR). The study population is shown in bold. Populations are ordered according to location, going anticlockwise around the Atlantic

Ocean
Rookery Extended D-loop Extended D-loop+mtSTR
n hap h+SD n hap h+SD
NUSA Northern US Limit, USA 52 7 0.624+0.044 - - -
CEFL Central East Florida, USA 534 11 0.549+0.016 534 29 0.724+0.019
SEFL South East Florida, USA 164 10 0.493+0.044 164 25 0.859+0.019
MKFL Key West, Florida, USA 20 1 0.000+0.000 20 2 0.100+£0.088
DTFL Dry Tortugas, Florida, USA 67 6 0.591+0.050 67 9 0.641+0.048
EBCMX Campeche and Yucatan, Mexico 173 5 0.264+0.041 - - -
GUCB Guanahacabibes Peninsula and San Felipe, Cuba 145 21 0.868+0.018 - - -
1JCB Isla de la Juventud, Cuba 9 3 0.556+0.165 - - -
CLCB Cayo Largo, Cuba 34 5 0.225+0.094 - - -
CR Tortuguero, Costa Rica 386 6 0.203+0.026 386 23 0.524+0.030
CI Grand Cayman, Cayman Islands (Wild population), UK 57 12 0.575+£0.077 57 19 0.838+0.037
BUC Buck Island, USA 49 3 0.191£0.072 - - -
AV Aves Island, Venezuela 67 3 0.444+0.061 - - -
SUR Matapica and Galibi, Suriname 58 3 0.101+£0.054 - - -
FG Cayenne, French Guiana 18 3 0.216+0.124 13 6 0.782+0.105
RA Atol das Rocas, Brazil 37 7 0.466+0.099 37 16 0.874+0.043
FN Fernando de Noronha, Brazil 16 2 0.233+0.126 16 10 0.950+0.031
TRI Trindade Island, Brazil 99 7 0.640+0.044 99 28 0.918+0.016
ASC Ascension Island, UK 267 11 0.366+0.038 199 33 0.802+0.028
STP Sdo Tomé and Principe 96 6 0.647+0.042 74 19 0.830+0.034
GB Poildo, Guinea-Bissau 289 3 0.014+0.010 288 6 0.083+0.022
[ Formia et al. (2007) L
4 W This Study extended D-loop+mtSTR, 2 sites: range=34-44%)
but increased considerably for the Central African sites
5 3 60 (Fig. 5; extended D-loop: range=18-58%; extended
g’ D-loop+mtSTR: range=48-78%). Lower mean rela-
% w0 tive contributions were estimated for West Africa foraging
g 2 aggregations, but the proportion increased when using the
3 extended D-loop+mtSTR (extended D-loop: range=3—10%;
1 2 extended D-loop+mtSTR: range=4-20%). Using priors
substantially changed results. When the Ascension rookery
. oL size was not taken into account, contribution to all areas
© SN ] ' © ) v D © AN ] CJ s : 3 3
& c}"v@\‘“ 0@,@&,@ &,& &v@&%’ @"?6&&'*2‘&&@6@@ & decreased (Fig. 5), yet the contribution of Ascension Island

Haplotype

Fig. 2 Genetic composition of green turtles (Chelonia mydas) from
the Ascension Island rookery characterised by Formia et al. (2007;
light grey) and this study (dark grey), using percentage frequencies for
haplotypes based on a~486 bp mitochondrial control region sequence
(short D-loop). The dominant haplotype (CM-AS8) is separated for ease
of viewing

that Ascension Island was the likely source population for a
large proportion of juvenile green turtles at southwest Atlan-
tic and Central African foraging sites (Fig. 5, Table S10).
The proportional contribution of Ascension to southwest
Atlantic sites remained similar with and without incorporat-
ing the mtSTR (extended D-loop, 4 sites: range=36-55%;

to southwest Atlantic and the Congo foraging aggregations
remained important. Overall, a large proportion of the imma-
ture green turtles foraging in the South Atlantic seem to orig-
inate in Ascension Island (Fig. 5, Table S10).

Discussion

To improve the understanding of green turtle connectivity in
the Atlantic Ocean, we undertook a high-resolution genetic
characterisation of the Ascension Island nesting population,
using two mitochondrial genetic markers. We found novel
haplotypes and uncovered important links between popula-
tions across the South Atlantic RMU.
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a FST: extended D-loops
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Fig. 3 Heatmaps and dendrograms based on (a) Fg; pairwise compari-
sons for haplotypes based on the extended D-loop among 21 Atlantic
green turtle nesting populations; (b) Fg; pairwise comparisons for hap-
lotypes based on the extended D-loop and mtSTR among 13 Atlantic
green turtle nesting populations; (c) @ pairwise comparisons for hap-
lotypes based on the extended D-loop among 21 Atlantic green turtle
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among 6 South Atlantic rookeries. Asterisks are included in the above
diagonal to indicate significant pairwise comparisons after FDR cor-
rection (for P<0.05, a) corrected p=0.008; b) corrected p=0.010; c)
corrected p=0.008; d) corrected p=0.014; Narum 2006). See Table 1
for abbreviations
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Fig. 4 PCoAs based on (a) Fg; pairwise distances for haplotypes
based on the extended D-loop among 21 Atlantic green turtle nest-
ing populations; (b) @¢; pairwise distances for haplotypes based on

the extended D-loop among

21 Atlantic green turtle nesting popula-

tions; (¢) Fgy pairwise distances for haplotypes based on the extended
D-loop+mtSTR among 13 Atlantic green turtle nesting populations.
See Table 1 for abbreviations
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Fig.5 Relative contribution of Ascension Island green turtle (Chelonia
mydas) rookery to eight Southwest Atlantic/East Atlantic juvenile for-
aging aggregations, estimated using rookery size as prior (white) and
without priors (grey), using only extended D-loop haplotypes (circles)

Genetic composition of Ascension Island

This study reinforces the importance of using higher-
resolution markers in population genetics research. Using
the mtSTR substantially increased the number of possible
haplotype combinations by 230% compared to the shorter
D-loop haplotype, theoretically improving the potential
ability to detect genetic differentiation. No significant
difference was shown among Ascension Island beaches,
even when incorporating the highly polymorphic mtSTR,
supporting the definition of Ascension Island as a single

population both in our

analyses and in its management

actions. However, one comparison (South West Bay and
Long Beach) was close to being significantly distinct
when the mtSTR was incorporated. We found no signifi-
cant difference in the genetic composition between our
study and a previous genetic composition study of the
island (Formia et al. 2007), despite being a decade apart.
This suggests that our sample size was adequate and the

population is stable.

and with a combination of the extended D-loop and mtSTR (squares).
See Table 1 for details on rookeries and foraging grounds incorporated
and Table S10 for values

Although overall differences between the two composi-
tions were not significant, CM-A45 and CM-A39 increased
in the present study compared to Formia et al. (2007) by a
relatively large amount for rarer haplotypes, although this
may be a sampling artefact. The present study recorded for
the first time the extended D-loop haplotype containing the
CM-A39 sequence previously found at Ascension Island.
CM-A45 or CM-A39 have not been recorded in any other
rookeries to our knowledge, but have been found in Bra-
zilian, Argentinian and Uruguayan foraging grounds (e.g.,
Naro-Maciel et al. 2007; Proietti et al. 2012; Prosdocimi et
al. 2024). This suggests that the haplotypes could be charac-
teristic of Ascension Island and reinforces substantiated ties
with Atlantic South American foraging grounds (Mortimer
and Carr 1987; Luschi et al. 1998; Putman and Naro-Maciel
2013; Patricio et al. 2017a).

CM-A42, well-recorded in South American foraging
grounds (e.g., Uruguay, Prosdocimi et al. 2024; Argentina,
Prosdocimi et al. 2012; Brazil, Jordao et al. 2017), had
previously only been identified in the rookery of Poildo,
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Guinea-Bissau (one individual; Patricio et al. 2017a). How-
ever, it had also been detected among green turtles from
the Cayman Turtle Centre Ltd (Barbanti et al. 2019). Since
Ascension Island was one of the main source populations
of the Cayman founder stock, it was correctly hypothesised
that CM-A42.1 was present in Ascension but remained to
be discovered until this study (Barbanti et al. 2019). We also
found for the first time at a rookery CM-A69 (CM-A69.1),
which had previously been an ‘orphan’ haplotype found
only at the S@o Francisco de Itabapoana foraging ground in
Brazil (Jordao et al. 2017).

Ascension Island mtSTR haplotypes varied only in the
first two repeat regions. For most of the haplotypes, the first
region varied between 6 and 8 ‘AT’ repeats and the sec-
ond region from 10 to 17, resembling the polymorphisms
seen in characterisations of Brazilian rookeries (Shamblin
et al. 2015b). However, we had two recordings of mtSTR
sequences with 5 ‘AT’ repeats in the first region, an occur-
rence not found in these Brazilian rookeries, both in individ-
uals with the CM-A45.1 haplotype, also not found in these
rookeries. This finding suggests that despite the similarities
between Ascension Island and the Brazilian rookeries shown
by our population structure analyses, genetic distinctions
may exist when considering rarer haplotypes. It also suggests
that the combinations of haplotypes carry genetic structure,
despite the fact that the mtSTR are more prone to homoplasy
due to high mutation rates (Shamblin et al. 2015b).

Atlantic green turtle population structure

The haplotype CM-AS8 is dominant across South Atlantic
populations (Naro-Maciel et al. 2007; Patricio et al. 2017a;
Prosdocimi et al. 2024); however, using the mtSTR we were
able to divide the CM-AS8 haplotype into 18 mtSTR varia-
tions. The mtSTR haplotype 7-12-4-4 was dominant in almost
all South Atlantic/West African rookeries studied. The com-
bination of both the dominant haplotypes ‘CM-AS8.1/7-12-4-
4’ characterises the South Atlantic/West African populations.

PCoAs based on the extended D-loop indicated that three
main groups of Atlantic rookeries could be clearly differen-
tiated according to dominant haplotypes: Northwest Atlan-
tic, Northern South America, and South and East Atlantic
(as previously reported; Encalada et al. 1996; Patricio et
al. 2017a). The high level of genetic similarity within the
South and East Atlantic suggests frequent gene flow coupled
with recent evolutionary history (Naro-Maciel et al. 2014).
This may enhance basin-scale population genetic diversity
(Slatkin 1987), particularly between Ascension Island and
the Brazilian rookeries, given their genetic similarity across
Fop, @grand D-loop/mtSTR analyses. Comparing structural
analyses based on haplotype frequencies, the visually dis-
tinct Atlantic-wide structure (the three separated groups) is
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lost when the mtSTR was incorporated. The PCoA incor-
porating the mtSTR instead distinctly separates the nesting
populations displaying the least genetic variability (Poilao,
Guinea-Bissau; Key West, Florida [MKFL]; Tortuguero,
Costa Rica). Within the less obviously separated group, the
North Atlantic and South Atlantic populations are still sepa-
rated by an axis, with the exception of Fernando de Noronha
(FN). The D-loop marker, despite being less variable than
the mtSTR, may incorporate variation more relevant to the
population structure of green turtles in the study area. Its
mutations could reflect historical separation, migration pat-
terns, or breeding behaviours that have led to distinct genetic
groupings (Encalada et al. 1996; Naro-Maciel et al. 2014).
On the other hand, the high variability of the mtSTR, while
potentially capturing more detailed genetic differences and
separating recently genetically isolated populations (e.g.,
Tortuguero, Costa Rica and Poildo, Guinea-Bissau), does
not seem to align as clearly with the population structure or
historical separations. This high variability could introduce
noise that obscures clear group distinctions ina PCoA. Hence,
variation in the D-loop may be more relevant to oceanwide
population structure across historically genetically varied
groups on an Atlantic-wide scale, and the mtSTR may be a
more suitable tool for further examining and refining popula-
tion structure differences between historically similar popu-
lations which are dominated by the same D-loop haplotypes.

The lack of significant differentiation recorded between
Ascension Island and Atol das Rocas across all four com-
parisons could suggest current gene flow facilitated by devi-
ations in natal homing. Interestingly, Fernando de Noronha
was significantly distinct from Ascension Island when com-
paring @g, and when the mtSTR was included. Atol das
Rocas is further from Ascension Island than Fernando de
Noronha, although the Brazilian rookeries are only~150
km from each other. Historically, Fernando de Noronha and
Atol das Rocas were treated as a unit (Bjorndal et al. 2006).
More recent, high-resolution mtSTR analysis suggested that
they were discrete populations with respect to natal homing
of females (Shamblin et al. 2015b), although conclusions
were based on @y comparisons. @ accounts for sequence
divergence and is now considered to be less appropriate than
Fgrfor the mtSTR due to the increased likelihood of differ-
ent mutations leading to the same haplotype (Tikochinski et
al. 2018; Shamblin et al. 2023a). Nevertheless, these results
show that the mtSTR can reveal finer genetic differentiation
between genetically similar populations.

Green turtle connectivity in the Atlantic
Consistent with previous mixed stock analyses using

shorter ~486 bp D-loop haplotypes (Bolker et al. 2007; Proi-
etti et al. 2012; Jorddo et al. 2017; Patricio et al. 2017a), our



Conservation Genetics

results based on the extended D-loop indicate that Ascen-
sion Island is a major source population for juvenile green
turtle foraging aggregations in southern Brazil and further
south in Uruguay (Fig. 6). We also show large contributions
of Ascension Island to juvenile foraging areas in Central
Africa (Congo and Sao Tomé and Principe), and, to a lesser
extent, West Africa. When mtSTR haplotypes were included
in the MSA analysis, contributions to the Southwest Atlan-
tic foraging ground were similar, but those to Unhocomo
(in Guinea-Bissau, West Africa), Sdo Tomé and Principe
and Congo showed a large increase. This suggests that the
addition of the highly polymorphic mtSTR region may have
increased the sensitivity of the analysis by reducing reli-
ance on the CM-A8 haplotype. When population size was
included as a prior in the MSAs, the estimated contributions
from Ascension Island to these regions generally increased.
Even when weighted priors were removed, the mean contri-
butions from Ascension Island to the southwest Atlantic and

50°W

Congo remained high, particularly when using the mtSTR
marker. The notable exception was Sdo Tomé and Principe,
where the estimated mean proportion of turtles from Ascen-
sion dropped significantly when no priors were considered.
This observation aligns with previous suggestions that the
Sdo Tomé and Principe population might be isolated, with
foraging aggregations originating from the island’s own
rookery, as discussed by Hancock et al. (2019).

Foraging aggregations from West Africa, particularly
those in Mauritania, located further north, showed lower
input from Ascension Island. Recent research estimated that
green turtles foraging in Mauritania predominantly origi-
nate from Guinea-Bissau and Suriname or French Guiana
(Patricio et al. 2024). In contrast, the foraging aggregations
in Uruguay and Congo appear to rely heavily on recruits
from Ascension Island. This strong connectivity with Uru-
guay was recently documented by Prosdocimi et al. (2024).
Notably, even higher mean relative contributions were
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Fig.6 Map showing the contribution of the Ascension Island green tur-
tle (Chelonia mydas) rookery (green triangle) to South Atlantic RMU
mixed stock foraging grounds derived from many-to-many mixed
stock analyses conducted on extended D-loop combined with mtSTR
haplotype data from 10 Atlantic rookery groups and 6 mixed stock
foraging aggregations. White triangles represent rookery groups, pie
charts represent relative contributions from Ascension Island (black),
estimated from an MSA with rookery size weighted priors. Greyed-

out triangles and circles represent additional rookeries and foraging
grounds included in the extended D-loop-only analysis. Arrows indi-
cate the general direction of currents significant to the discussion,
adapted from Muller-Karger et al. (2017). NBrC=North Brazil Cur-
rent, SEC=South Equatorial Current, SECC=South Equatorial Coun-
tercurrent, BrC=Brazil Current, BgC=Benguela Current. See Table 1
for rookeries included within ‘MX” and ‘USA’
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estimated to Congo. Ascension Island’s central location in
the South Atlantic, at 7.947°S, places it directly within the
South Equatorial Countercurrent (6°S-9°S) latitudes, which
flows eastward. As a result, a significant proportion of post-
hatchlings from Ascension Island may potentially drift with
this current, while others are carried westward by the South
Equatorial Current (Fig. 6; Brown 1990). The extent to
which green turtle populations across the South Atlantic are
connected by east-to-west (Patricio et al. 2017) and west-
to-east (Monzdn-Argiiello et al. 2010) migrations has been
an important and controversial question in recent research.
Our results lend further support to this by demonstrating the
connectivity of green turtles hatched at Ascension Island to
both east and west. To date, no adult turtle has been sat-
ellite tracked migrating from Ascension Island to Central
Africa, all have been tracked to Brazil, with recent tracking
spanning the full nesting season (Luschi et al. 1998; Hays
et al. 2002; S. Weber, personal communication November
4, 2024). We hypothesise that as juveniles, some Ascension
Island green turtles may use developmental habitats on the
Central African coast and then, as adults, migrate to forag-
ing grounds in Brazil. The sampling of adults from Cen-
tral African and Brazilian foraging grounds could help to
confirm this theory by further characterising genetic links
between these populations across life stages.

Future directions

Our study reinforces the importance of using higher-resolu-
tion markers in marine turtle genetic analyses. The database
of mtSTR sequences in Atlantic green turtles is less exten-
sive than that of the D-loop. This additional marker may be
key to identifying finer genetic differentiation, particularly
within populations that have previously been treated as a
single unit (Shamblin et al. 2015a, b). Additionally, targeted
mitogenomic single nucleotide polymorphism (mtSNP)
sequencing of the dominant CM-AS8 haplotype may help to
further increase resolution (Shamblin et al. 2023b), poten-
tially revealing differences between Atol das Rocas and
Ascension Island, and among Ascension Island’s beaches.
MSAs within the South Atlantic have previously been lim-
ited by the dominance of the CM-AS8 haplotype. Our results
incorporating the mtSTR suggest a greater link between
Central and West Africa and the South Atlantic than when
using D-loop haplotypes alone. However, for a more robust
conclusion, more populations need to be characterised for
mtSTR sequences, and some populations require larger
sample sizes, namely French Guiana (nesting), and Sao
Tomé and Principe (nesting and foraging). Bioko, in partic-
ular, is a key Central African rookery, not yet characterised
via the extended D-loop or mtSTR, that likely has important
genetic relationships with the populations discussed in this
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study (Formia et al. 2006). Confidence intervals in our MSA
were large, as has been noted in several MSA studies on
Atlantic green turtles (e.g., Proietti et al. 2012; Stahelin et
al. 2022), and so results need to be treated with caution as
the exactness of estimates is uncertain. These large intervals
may be the result of incomplete representation of source
rookeries or high regional gene flow in the Atlantic (Naro-
Maciel et al. 2014; Patricio et al. 2024). Increased sample
sizes among and within populations have the potential to
improve the reliability of MSA estimates. There is a par-
ticular need for larger sample sizes when using the mtSTR
to produce robust baseline frequencies due to their highly
polymorphic nature (Shamblin et al. 2015b). Additionally,
incorporating the distance between rookeries and foraging
grounds, in combination with nester abundance, has been
shown to improve the reliability of MSA estimates (Stahelin
et al. 2022; Dolfo et al. 2023), and should thus be consid-
ered in future assessments.

Mitochondrial heteroplasmy also raises some important
questions in our study. Some level of heteroplasmy was pres-
ent in all our mtSTR sequences. Whilst most haplotypes could
be determined based on the dominant variant using relative
peak heights (Tikochinski et al. 2012; Shamblin et al. 2020),
several had to be excluded due to the inability to determine
the dominant mtDNA haplotype present. High-throughput
sequencing or genotyping could improve haplotype deter-
mination in heteroplasmic individuals and prevent the loss
of samples from the dataset, as well as identify further het-
eroplasmic haplotypes beyond the two afforded by Sanger
sequencing (Tikochinski et al. 2020). Despite occurrences of
heteroplasmy, mtSTRs have been shown to be robust to iden-
tify population structure and continue to be used in Mediter-
ranean studies (Tikochinski et al. 2018; Karaman et al. 2022;
Ohana et al. 2025). High amounts of heteroplasmy have also
been reported in the Atlantic, where dominant haplotypes
were assigned in ‘virtually all cases’ (Shamblin et al. 2020).
Recently, it has been proposed that heteroplasmy in sea turtles
may provide an evolutionary advantage by improving popu-
lation diversity and acting as a buffer to population bottle-
necks (Tikochinski et al. 2020). This suggests that comparing
levels of mitochondrial heteroplasmy, looking at differences
between regions and even life stages, could be relevant when
mapping the trajectory of Atlantic green turtle populations in
response to current threats.

Conservation implications

Whilst Ascension Island’s nesting grounds and the sur-
rounding waters are legally protected and the population
is in recovery from a dramatic reduction caused by mass
harvesting for consumption (Weber et al. 2014), the depen-
dence of breeding green turtles on other areas of the Atlantic



Conservation Genetics

during their lifecycle and migrations exposes them to a
range of threats. For instance, fishery bycatch within arti-
sanal gillnets is a significant threat to green turtles along
the Brazilian coast (Lopez-Barrera et al. 2012) and the
west coast of Africa (Catry et al. 2009; Moore et al. 2010).
Here, we show important links between Ascension Island
and juvenile foraging areas along the South American, West
African and Central African coasts, highlighting the need
for international collaborations between nations that have
a shared responsibility for this turtle population. Such col-
laborations could lead to the establishment of coordinated
regional monitoring programmes, the exchange of crucial
demographic information (such as genetic makeup), and
the dissemination of reports on prevalent threats (including
bycatch rates and poaching incidents). They could also offer
an avenue for facilitating the transfer of knowledge and
skills, as well as enabling the analysis of data collected by
less financially resourced programs through the support of
better-funded partners. Moreover, regional cooperation can
significantly amplify efforts and exert greater pressure on
stakeholders to implement effective conservation measures
at sites that are interconnected through this turtle population
and face significant threats.
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